标签 计数 下的文章

题目链接:CF1540C Converging Array

题意:

现在有长度为 $n$ 的数组 $a$ 和长度为 $n - 1$ 的数组 $b$,进行无穷次如下过程直至 $a$ 数组值收敛。

  • 选择一个数字 $i$。
  • 同时使 $a_i = \min(a_i, \frac{a_i + a_{i + 1} - b_i}{2})$,$a_{i + 1} = \max(a_{i + 1}, \frac{a_i + a_{i + 1} + b_i}{2})$(没有取整)。

定义 $F(a, b)$ 为操作完成后 $a_1$ 的值。

现在你知道数组 $b$ 和长度为 $n$ 的数组 $c$,保证 $\forall i \in [1, n],\ 0 \le a_i \le c_i$。

有 $q$ 组询问,每次问使 $F(a, b) \ge x$ 的数组 $a$ 有多少个。

$2\le n\le 100,0\le b_i,c_i\le 100,1\le q\le 10^5,-10^5\le x\le 10^5$。

- 阅读剩余部分 -

题目链接:[CTS2019] 随机立方体

题意:

有一个 $n\times m\times l$ 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标至少有一维相同的其他格子上的数都要大的话,我们就称它是极大的。
现在将 $1\sim n\times m\times l$ 这 $n\times m\times l$ 个数等概率随机填入 $n\times m\times l$ 个格子(即任意数字出现在任意格子上的概率均相等),使得每个数恰出现一次,求恰有 $k$ 个极大的数的概率。
$1\le T\le 10, 1\le n\le 5\times 10^6$。



- 阅读剩余部分 -