【题解】CF1438F Olha and Igor
CF1438F Olha and Igor
交互题。
给定一棵深度为 $h$ 的满二叉树,则其恰好有 $2^h-1$ 个节点。你可以进行以下询问不超过 $n+420$ 次:
选择三个互不相同的点 $u,v,w$,交互库将回答以 $w$ 为根的时候,$u,v$ 的 $\text{lca}$。
你需要回答原树的根。
$3\le h\le 18$。
交互题。
给定一棵深度为 $h$ 的满二叉树,则其恰好有 $2^h-1$ 个节点。你可以进行以下询问不超过 $n+420$ 次:
选择三个互不相同的点 $u,v,w$,交互库将回答以 $w$ 为根的时候,$u,v$ 的 $\text{lca}$。
你需要回答原树的根。
$3\le h\le 18$。
交互题。
给定 $n$,则一开始有集合 $S=\{x|x\le n,x\in \mathbb{N}^+\}$,其中有一个特殊值 $x$,你需要通过以下操作找到他。
$\texttt{A}\ a$:询问集合 $S$ 中 $a$ 的倍数个数 $(1\le a \le n)$。
$\texttt{B}\ a$:先询问集合 $S$ 中 $a$ 的倍数个数,然后删去所有还在 $S$ 中的 $a$ 的倍数,而 $x$ 不会被删去 $(2\le a \le n)$。
$\texttt{C}\ a$:回答 $x=a$。
$\texttt{A,B,C}$ 操作的个数和不能超过 $10000$。
$1 \le x \le n\le 10^5$。
题意:
已知现有一个长 $n$ 的数组,每个数字都是严格小于 $2^b$ 的非负整数,每次可以给定 $i,x$ 来询问 $a_i>x$ 是否成立。
需要在 $3\times(n+b)$ 次询问之内求出数组的最大值。
$n,k\le 200$,交互库自适应。