分类 题解 下的文章

题目链接:[Ynoi2009] rprmq

题意:

有一个 $n \times n$ 的矩阵 $A$,初始全是 $0$,有 $m$ 次修改操作和 $q$ 次查询操作,先进行所有修改操作,然后进行所有查询操作

一次修改操作会给出 $l_1,l_2,r_1,r_2,x$,代表把所有满足 $l_1 \le i \le r_1$ 且 $l_2 \le j \le r_2$ 的 $A_{i,j}$ 元素加上一个值 $x$。

一次查询操作会给出 $l_1,l_2,r_1,r_2$,代表查询所有满足 $l_1 \le i \le r_1$ 且 $l_2 \le j \le r_2$ 的 $A_{i,j}$ 元素的最大值。

$1\le n,m\le 5\times 10^4,1\le q \le 5\times 10^5$。

- 阅读剩余部分 -

题目链接:CF1466H Finding satisfactory solutions

题意:

由于洛谷目前的中文题面过于简洁,导致看完中文题面之后本题就已经解决了一半,所以我来简单翻译一下英文题面。

有 $n$ 个人,第 $i$ 个人初始的时候手上有物品 $i$。
他们之间可以交换物品,每个人恰好拿到一个物品。而每个人有对物品的偏好,第 $i$ 个人的偏好用排列 $\{s_{i,n}\}$ 来表示。第 $i$ 个人相较物品 $y$ 更喜欢物品 $x$,当且仅当在排列 $\{s_{i,n}\}$ 中 $x$ 在 $y$ 之前。
对于一个物品交换的排列 $p$,表示第 $i$ 个物品最后到了 $p_i$ 的手上。对于一个非空的,人的子集 $S$,如果子集内部的人,使用子集内所有人初始手上的物品进行交换,可以达到以下结果:

  1. 不存在一个人 $x\in S$,在子集内交换后得到物品 $y\in S$,且第 $x$ 个人比起 $y$ 更喜欢 $p_x$。
  2. 至少存在一个人 $x\in S$,在子集内交换后得到物品 $y\in S$,且第 $x$ 个人比起 $p_x$ 更喜欢 $y$。

则称这样一个子集 $S$ 是“不稳定”的。一个物品交换的排列 $p$ 是“稳定”的,当且仅当不存在一个“不稳定”的子集。
现给出一个物品交换的排列 $p$,求有多少种 $\{\{s_{1,n}\},\{s_{2,n}\}\cdots,\{s_{n,n}\}\}$ 使得 $p$ 是“稳定”的。
(可以证明,对于一组 $\{\{s_{1,n}\},\{s_{2,n}\}\cdots,\{s_{n,n}\}\}$,恰好存在一个 $p$ 是“稳定”的)
$1\le n\le 40$。






- 阅读剩余部分 -

题目链接:[Ynoi2008] stcm

题意:

给定一棵树,可以维护一个集合,支持以下操作:

  1. 当前集合中插入一个节点 $x$。
  2. 撤回上一次插入操作。
  3. 将当前点集标为第 $i$ 个点的子树补信息。

一个点 $x$ 的子树补信息定义为:树的点集除去 $x$ 的子树(包括 $x$)内的点得到的集合。
要求在 $4.5\times 10^6$ 次操作以内,标记所有点的子树补。
$1\le T\le 3,1\le n\le 10^5$。



- 阅读剩余部分 -