【题解】CF1540C Converging Array
题意:
现在有长度为 $n$ 的数组 $a$ 和长度为 $n - 1$ 的数组 $b$,进行无穷次如下过程直至 $a$ 数组值收敛。
- 选择一个数字 $i$。
- 同时使 $a_i = \min(a_i, \frac{a_i + a_{i + 1} - b_i}{2})$,$a_{i + 1} = \max(a_{i + 1}, \frac{a_i + a_{i + 1} + b_i}{2})$(没有取整)。
定义 $F(a, b)$ 为操作完成后 $a_1$ 的值。
现在你知道数组 $b$ 和长度为 $n$ 的数组 $c$,保证 $\forall i \in [1, n],\ 0 \le a_i \le c_i$。
有 $q$ 组询问,每次问使 $F(a, b) \ge x$ 的数组 $a$ 有多少个。
$2\le n\le 100,0\le b_i,c_i\le 100,1\le q\le 10^5,-10^5\le x\le 10^5$。