【题解】[HNOI2019] JOJO
题目链接:[HNOI2019] JOJO
题意:
维护一个字符串 $s$,支持以下两种操作:
- 在 $s$ 末尾插入连续 $x$ 个字符 $c$。
- 将 $s$ 撤回到第 $x$ 次操作之后的状态。
在每次操作后,计算 $s$ 的每一个前缀的最长 $\text{border}$ 的长度和。
$1\le n\le 10^5$。
题目链接:[HNOI2019] JOJO
题意:
维护一个字符串 $s$,支持以下两种操作:
- 在 $s$ 末尾插入连续 $x$ 个字符 $c$。
- 将 $s$ 撤回到第 $x$ 次操作之后的状态。
在每次操作后,计算 $s$ 的每一个前缀的最长 $\text{border}$ 的长度和。
$1\le n\le 10^5$。
题意:
由于洛谷目前的中文题面过于简洁,导致看完中文题面之后本题就已经解决了一半,所以我来简单翻译一下英文题面。
有 $n$ 个人,第 $i$ 个人初始的时候手上有物品 $i$。
他们之间可以交换物品,每个人恰好拿到一个物品。而每个人有对物品的偏好,第 $i$ 个人的偏好用排列 $\{s_{i,n}\}$ 来表示。第 $i$ 个人相较物品 $y$ 更喜欢物品 $x$,当且仅当在排列 $\{s_{i,n}\}$ 中 $x$ 在 $y$ 之前。
对于一个物品交换的排列 $p$,表示第 $i$ 个物品最后到了 $p_i$ 的手上。对于一个非空的,人的子集 $S$,如果子集内部的人,使用子集内所有人初始手上的物品进行交换,可以达到以下结果:
- 不存在一个人 $x\in S$,在子集内交换后得到物品 $y\in S$,且第 $x$ 个人比起 $y$ 更喜欢 $p_x$。
- 至少存在一个人 $x\in S$,在子集内交换后得到物品 $y\in S$,且第 $x$ 个人比起 $p_x$ 更喜欢 $y$。
则称这样一个子集 $S$ 是“不稳定”的。一个物品交换的排列 $p$ 是“稳定”的,当且仅当不存在一个“不稳定”的子集。
现给出一个物品交换的排列 $p$,求有多少种 $\{\{s_{1,n}\},\{s_{2,n}\}\cdots,\{s_{n,n}\}\}$ 使得 $p$ 是“稳定”的。
(可以证明,对于一组 $\{\{s_{1,n}\},\{s_{2,n}\}\cdots,\{s_{n,n}\}\}$,恰好存在一个 $p$ 是“稳定”的)
$1\le n\le 40$。
想上 $\text{grandmaster}$ 却发现自己根本没有这样的实力,而且平常一些难度不那么高的题都做不出来,想了想还是觉得不要好高骛远,从简单的开始。
这个 $\text{LIST}$ 一般收集一些在 $\text{CF}$ 上评分在 $2400-2600$ 之间的题,每题给自己至少 $\text{20min}$,至多 $\text{1h}$,争取每题都能自己做出来 虽然感觉就不太可能。
感觉可以记录一下自己在做题的时候,都想到些啥。在做完之后回来总结一下之类的。
update on 2021.09.30:擦 怎么直接就上了
题目链接:[Ynoi2008] stcm
题意:
给定一棵树,可以维护一个集合,支持以下操作:
- 当前集合中插入一个节点 $x$。
- 撤回上一次插入操作。
- 将当前点集标为第 $i$ 个点的子树补信息。
一个点 $x$ 的子树补信息定义为:树的点集除去 $x$ 的子树(包括 $x$)内的点得到的集合。
要求在 $4.5\times 10^6$ 次操作以内,标记所有点的子树补。
$1\le T\le 3,1\le n\le 10^5$。
题目链接:重返现世
题意:
有 $n$ 个元素,每次抽取到第 $i$ 个的概率是 $\dfrac{p_i}{m}$,求抽到任意不同 $k$ 个的期望次数。
$1\le n\le 1000,1\le m\le 10^4,0\le n-k\le 10,\sum p_i=m$。